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An Application of Multivariate Statistical Analysis
for Query-Driven Visualization
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Abstract —Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scienti�c comm unity
for scalable analysis methods that can rapidly identify salient trends in scienti�c data. Query-Driven Visualization ( QDV) strategies are
among the small subset of techniques that can address both large and highly complex datasets. This paper extends the utility of QDV
strategies with a statistics-based framework that integrates non-parametric distribution estimation techniques with a new segmentation
strategy to visually identify statistically signi�cant tr ends and features within the solution space of a query. In this framework, query
distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined
behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution
estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical signi�cance. We
demonstrate the analysis bene�ts these two strategies prov ide and show how they may be used to facilitate the re�nement o f constraints
over variables expressed in a user's query. We apply our method to datasets from two different scienti�c domains to demon strate its
broad applicability.

Index Terms —Query-Driven Visualization, Multivariate Analysis, Kernel Density Estimation.
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1 INTRODUCTION

SCIENTIFIC visualization accelerates the discovery process
in contemporary science by transforming abstract data into

a visual representation that readily conveys comprehensible,
meaningful information to the scientist. In the scienti�c dis-
covery process, Bergeron [6] identi�es three functional modal-
ities for visualization use: visual-discovery, visualization-based
analysis, and presentation visualization.

Discovery visualization strategies are employed early in the
scienti�c discovery process during initial stages of investiga-
tion. These strategies are designed to help scientists uncover
new trends or features in data where the scientist is unsure—
due to the complexity of the data or the unde�ned nature of
the event being studied—what trends or anomalies to look for.
Such strategies typically demand a great deal of I/O bandwidth
and computation to support high levels of user interactivity.

Query-based methods are class of highly effective discovery
visualization strategies. One query-based approach, Query-
Driven Visualization (QDV), is an extremely powerful strategy
that couples scalable database indexing technologies, like
FastBit [41], [42], [43] and DP-BIS [18], with visualization
techniques to ef�ciently manage large-scale data, perform
rapid data analysis, and support unconstrained, interactive
exploration of complex data [13], [15], [16], [37].

The term “Query-Driven Visualization” refers to the strategy
of restricting computation and cognitive workloads exclusively
to records de�ned to be “interesting” by the scientist. This
strategy is realized through the evaluation of user-speci�ed,
multidimensional Boolean range queries—e.g. (temperature<
1200) AND (pressure> 2:4)—that rapidly �lter away large
portions of non-pertinent data, and allow smaller, more in-
teresting subsets of data to be ef�ciently analyzed and visu-
alized. QDV provides a �exible analysis component similar

to techniques based on brushing with linked views [4], [23],
[40]; both visual-exploratory approaches employ a user-driven
process for selecting and highlighting important trends in
complex data. Unlike brushing methods, however, QDV is
inherently and tightly coupled with database technologiesthat
allow QDV strategies to be readily applied to large-scale data.

Query-based visualization research successfully addresses
many important areas such as scalability and performance [14],
[37], visualizing multitemporal data [13], [16], applyingQDV
strategies to adaptively meshed domains [16], addressing un-
certainty in multivariate queries [13], and extending query-
based strategies to address the challenges of visualizing
function �eld data [1]. Researchers have also successfully
combined domain-speci�c knowledge with QDV, e.g., to study
network traf�c [5] or combustion �ame fronts [15].

Comparatively little work, however, has been performed
on the explicit study of query solutions, i.e. the set of
records selected by a scientist's multidimensional Boolean
range query. This underdeveloped area of research highlights
a central problem for query-based strategies like QDV: while
solutions to queries can help scientists identify interesting
visual features, trends, or anomalies within their data, ex-
isting query-based research offers little assistance in helping
scientists to better understand these events. Combustion �ame
fronts, vortices, chemical reaction fronts are all examples of
very complex scienti�c phenomenon. Obtaining greater insight
into these events with QDV (e.g., their formation, duration,
and evolution) requires understanding how all variables—
pressure, temperature, etc—jointly interact within the solution
space of a query. Further, scientists must be able to analyze
and understand individual variable trends within the context
of these joint interactions—e.g. among all chemical species
within the �ame front region, which chemical radicals are most
signi�cant to the joint trends driving the combustion process?
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The challenge is to extend the strengths of QDV with new
analysis methods that can help QDV users better understand
the solutions to their queries. Such strategies are essential for
scientists to progress from stages of discovery visualization to
stages of visual analysis and presentation. This work extends
the utility of QDV with a statistical framework that enables
scientists to attain greater levels of insight into the features
and anomalies identi�ed by QDV applications. With this
framework, QDV users can identify:

� the individual signi�cance (e.g. central statistical tenden-
cies and important trends) of each variable to the query's
solution in the comparative context of all other variables
constrained by the query;

� the salientjoint trends (i.e. trends based on the behav-
ior and interaction ofall variables combined) that are
characteristically important to understanding the query's
solution; and,

� how to adjust individual variable constraints in a query
to focus on, or exclude, these newly identi�ed trends in
subsequent searches.

The new insight provided by our statistical framework will
help to accelerate scientists from stages of visual-discovery
into stages of visual analysis and presentation.

In our framework, the “statistical structure” of a query is
composed of two statistical measures: a global measure that
takes into account all variables constrained by the query, and
a segmentation, which is based on the localized statistical
contribution of all variables to the query's solution.

The global measure is comprised of the estimated joint
distribution of the query's solution space. Exploring thisjoint
distribution allows QDV users to interactively explore their
query's solution and visually identify the regions where the
combinedbehavior of constrained variables is most important
or interesting to their search. To provide further insight into
the query's joint distribution, we introduce a new segmentation
strategy that extends the distribution estimation analysis by
visually conveying theindividual importance of each variable
to these regions of high statistical signi�cance. The global
and localized measures, when integrated together, facilitate
a means for re�ning variable constraints expressed in the
QDV user's query. This framework addresses a critical need
in query-based research by providing a domain-agnostic ap-
proach that solidi�es a path for discovery visualization users to
take in order to begin understanding the events and anomalies
they have identi�ed in their data.
The main contributions of this work include the following:

� We introduce a statistics-based framework that extends
the utility of QDV strategies by helping users to better
understand the solutions to their queries. The core of
this framework is based on a strategy that integrates
non-parametric distribution estimation techniques with a
new segmentation strategy to visually identify statistically
important variable trends—both individual variable trends
and joint trends for groups of variables—within the
solution space of a query.

� We show how users can use the information obtained
from the query's joint distribution and segmentation to

re�ne the constraints over individual variables in a mul-
tivariate query.

We demonstrate these methods across data from different
application domains. Furthermore, we perform all statistical
data processing on the graphics processing unit (GPU) to
facilitate quick response times for the QDV user.

In the next section, we discuss work that is germane to
our efforts. In Section 3 we present our statistical processing
framework, and approach for creating surfaces and segmen-
tations of query solutions. Our surfacing and segmentation
enables meaningful query visualization and analysis, as we
show in Section 4. We conclude by addressing important im-
plementation issues, with a discussion of GPU implementation
and performance in Section 5.

2 PREVIOUS WORK

2.1 Distribution Estimation in Image Processing and
Computer Vision

In the image processing community, distribution functions
and methods for estimating distributions, e.g., kernel density
estimates (KDE) [33], [34], are used primarily for image
classi�cation—i.e. a Boolean segmentation of the image into
regions of interest and regions of non-interest. For example,
Zhang and Yang [46] utilize KDE and statistical analysis to
detect and isolate moving objects of interest, e.g. pedestrians,
cars, etc., from streaming images. Liu et al. [28] also demon-
strate a KDE-based probabilistic framework for image classi-
�cation. They use probability distribution functions based on
a hybrid KDE and Gaussian Mixture Model (GMM) to iso-
late moving objects from movie frames while simultaneously
removing artifacts like shadows and obstructing foreground.

Mean shift clustering [9], [12], [45], which is based
on the mean shift procedure presented by Fukunaga and
Hostetler [11], is a common, non-parametric segmentation
technique used in computer vision research to facilitate feature
space analysis. In mean shift clustering, the feature space
of the image is modeled by its estimated joint distribution
(obtained through KDE methods). Comaniciu and Meer [9]
show that the dense regions in the feature space of the image
directly correspond to local maxima in the image's estimated
joint distribution. Segmentation of the image is realized by
assigning pixels in feature space to the modality nearest the
pixel in the image's estimated joint distribution. There is
thus one unique segment in the image for every unique local
maxima in the image's distribution estimate.

A fundamental difference between the segmentation gener-
ated by mean shift clustering and our segmentation strategy
is that mean shift clustering is driven by the gradient of the
estimated joint distribution, whereas our segmentation isbased
on the localized statistical signi�cance each variable plays in
constructingthe joint distribution. Hence, mean shift clustering
is a post-process performedafter the KDE calculation, and
our segmentation is obtainedduring the process of calculating
the KDE. In Section 3.3 we discuss this difference more
thoroughly when we introduce our segmentation procedure.
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2.2 Distributions in Visualization

In the visualization community distribution functions, e.g.
histograms [22], support and facilitate a wide variety of tasks.
For example, the volume reconstruction equation used in
splatting utilizes a distribution function to calculate and spread
the color contribution a given voxel makes to a pixel region
in screen space [38]. Westover [39] shows the model used
to construct the splatting distribution function (e.g. Gaussian,
bilinear) dramatically in�uences the quality of the rendered
image during the splatting process. Craw�s and Max [10]
present a cubic spline function for splatting that supportsboth
accurate rendering from all viewing directions and generates
images superior to those rendered with a Gaussian distribution
kernel. Mueller et al. [31] use distribution kernels of varying
size, where the kernel size is based on a given voxel's
distance to the viewing plane, to effectively ameliorate aliasing
artifacts in splatting. This type of approach is particularly
effective when the volume resolution is higher than the image
resolution.

Histograms are also used extensively in volume rendering.
Ledergerber et al. [26] utilize a moving least squares method to
reconstruct the underlying distribution of a series of datapoints
along a single ray. They use the reconstructed distribution
to volume render high-quality images with accurate shading.
Kniss et al. [25] combine the underlying distribution functions
of scalar data values with data attributes, such as gradient
magnitude, to derive 2D and 3D transfer functions. These
transfer functions provide a powerful and intuitive way to
rapidly isolate important visual features (e.g. surfaces)in
multivariate data that are not able to be isolated with simple 1D
transfer functions. Finally, Lundstrom et al.[30] combineuser
domain knowledge, in the form of local histogram criteria, into
a certainty-based classi�cation strategy to create transfer func-
tions for direct volume rendering. They apply their strategy
on magnetic resonance data and show that their constructed
transfer functions clearly detect and separate important tissues
of interest, e.g. liver, spleen, kidney, during volume rendering.

Recently, the direct relationship between isosurface com-
plexity, histogram distributions, and geometric statistics (i.e.,
the area, volume, and gradient magnitude corresponding to
the surface of a given isovalue) has been established by Carr
et al. [7] and Scheidegger et al. [35]. Scheidegger et al.
show that isosurface statistics and histograms converge tothe
same results. They extend this �nding by showing how their
techniques can be seen as a way to calculate expectations
of random variables on isosurfaces. Bajaj et al. [2] compute
geometric statistics of isolines and isosurfaces and display
them in an interface to assist users performing discovery visu-
alization tasks. In this work, contour trees are used to provide
global structure to the observed statistical measures in order to
provide visual cues to the user about interesting and important
isovalues in scalar data. This work presents an excellent tool to
guide scientists tasked with visual discovery. Unfortunately, as
the authors' strategy focuses on scalar �eld data, the work does
not immediately lend itself to the challenges of visualizing
multivariate data; for example, the important trends observed
between multiple variables in high dimensional data.

Linsen et al. [27] focus on feature space analysis for
Smoothed Particle Hydrodynamic (SPH) simulations with a
d-dimensional binning strategy to estimate distributionsfor
SPH-based scattered data. The resulting distribution gives rise
to a hierarchical distribution-based clustering of feature space.
However, in comparison to our approach, their method cannot
be used to examine the in�uence individual variables have in
the distribution or the distribution generated by the speci�c
subset contained in a query's solution set.

Query-driven visualization offers a rich setting in which to
employ distribution functions for analysis. In the following
section we apply a statistics-based framework to generate a
joint distribution function for a query's solution. We use this
distribution to construct accurate surfaces that indicatewhere
important regions of interest lie within the solution spaceof
the query. We also generate a segmentation, based on the
contributing distribution of all variables, in order to isolate
and visualize important statistical features of interest from the
query. This segmentation can be used to help re�ne variable
constraints in the query in order to further investigate regions
of interest.

3 METHOD

Query-Driven Visualization (QDV) is based upon the evalu-
ation and direct visualization of queries over large scienti�c
data [37]. Queries typically take the form of Boolean range
constraints upon individual variables of multivariate data. The
“solution” to a query are the regions of a dataset for which
the variables satisfy the range constraints.

Consider a functionf : R3 ! Rd, and a query comprised of
lower and upper limits,a and b respectively, upon the range
of f . The solutionQ to the query may then be de�ned as:

Q := f p 2 R3ja � x � bg;

wherea;b 2 Rd, and x is the vector of variable values asso-
ciated with pointp, e.g. f (p) = x = ( x0; : : : ;xd). The solution
setQ then corresponds to all the points in the spatial domain
for which ai � xi � bi for i 2 (0; : : : ;d).

Classically, query solution sets have been visualized by
using a straightforward depiction of their data constituents (i.e.
points or cells). This visualization is carried out by rendering
each cell that passes the query as a hexahedral cube [16], [37],
or a solid sphere [13]. An example of this type of rendering
is shown in Fig. 1. In this image, regions of low pressure
and high pressure are observed in a hurricane dataset. These
regions correspond to areas where pressure is less than -1500
Pascal (green at center), or above 250 Pascal (blue).

Isosurfaces too can be used to visualize query solution sets
by de�ning the functionh : Rd ! [0;1] :

(h� f )( p) =
�

0 if p =2 Q
1 if p 2 Q

Visualizing the surface(h� f ) � 1(0:5) approximates the bound-
ary containingQ with a single surface and more smoothly than
cell or sphere-based renderings.

In our approach, however, by estimating the joint distribu-
tion of the p 2 Q, we are able to provide not only a single,
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Fig. 1. This �gure depicts a typical cell-based rendering used
to visualize query solutions in Query-Driven Visualization. In
this image, regions of low pressure (green, at center) and high
pressure (blue) are visualized for a query that selects regions
where pressure is less than -1500 Pascal, or above 250 Pascal.

accurate surface that depicts the query's boundary, but also
provide information to the QDV user that enables them to
better understand their query's solution.

For example, consider the solution set of a query that
constrains multiple variables from a turbulent combustion
dataset: e.g. temperature, pressure, as well as chemical species
such as methane (CH4), water (H2O), and hydroxyl radicals
(OH). The isosurface corresponding to the lowest, non-zero
estimated density in the query's joint distribution (see the
de�nition of Smin in Section 3.2) de�nes the accurate, smooth
boundary for the query's solution. Isosurfaces corresponding
to areas of slightly increased density can indicate areas where
individual variable distributions are simultaneously in astate
of transition. With respect to our combustion example, these
regions can indicate where the concentration of chemical
species and values for temperature and pressure are alljointly
changing rapidly within the query region; such areas can be
indicative of important events such as �ame fronts, extinction
regions etc. Isosurfaces corresponding to areas of high density
indicate regions where variables possess increased statistical
signi�cance. Speci�cally these regions, and the corresponding
range of values associated with each variable in these regions,
indicate the locations and range of values for each variable
that best characterize, statistically, the query's solution.

The foundation of our method is the computation of the
underlying joint variable distribution for multivariate data
within a query solution (Section 3.1). Using this joint dis-
tribution estimate, we describe the construction of surfaces
from the distribution �elds (Section 3.2). Finally, we de�ne
a segmentation of the query solution based on the localized,
statistical signi�cance each variable plays inconstructingthe
joint distribution (Section 3.3).

3.1 Distribution Estimation for Queries

We begin our query analysis by constructing a distribution
estimation for the multivariate solution space of a query.
Kernel Density Estimation (KDE) can be applied to develop
a statistical model of the underlying functional behaviourof

multiple samples from one or more variables. Consider a set
of N observed data samplesx0;x1; : : : ;xN from a function
f : R3 ! R. The estimationf̂ for the underlying distribution
of f is:

f̂ (x) =
1

Nh

N

å
i= 1

K
�

x� xi

h

�
; (1)

whereh is the kernel bandwidth parameter for smoothing, and
K is a Gaussian kernel:

K(x) =
1

p
2p

exp� x2
2 : (2)

To determine the kernel bandwidth parameter, we employ
an adaptive estimate spreadmethod [36]. This method has
been shown to work well for unimodal distributions, while
not over-smoothing features in multimodal distributions:

h := 0:9
�

min
�

s 2;
R

1:34

��
N� 1

5 ; (3)

wheres 2 andR are the standard deviation and inner quartile
range for the data samples, respectively.

In our work we apply KDE over the solution set of a
query. Thus the data samples are the multivariate valuesx2 Rd

corresponding to the pointsp 2 Q. Correspondingly, we must
construct the joint distribution estimate over multivariate data
samples, where the multivariate KDE is de�ned:

f̂ (x) =
1

N
n

Õd
j= 1h j

o
N

å
i= 1

d

Õ
j= 1

K

 
x j � xi

j

h j

!

: (4)

Here we use unique, per-variable kernel bandwidth parameters
h j computed using (3) to evaluate this multivariate Gaussian
kernel.

3.2 Visualizing Queries Using Their Distribution

Previous QDV surfaces have presented a “blocky”, binary
separation of space due to a lack of interpolation away from
points returned by the query engine [37]. In the previous
section we de�ned the construction of distribution estimates
for a multivariate query's solution space. Now, we utilize these
estimates to de�ne surfaces that bound query regions.

From a joint distribution estimate, a new scalar �eldg :
R3 ! R is formed, whereg maps all elementsp 2 Q to
their distribution values computed in (4). Elements outside the
solution set, i.e.p =2 Q, are set to zero because they do not
contribute to the query's underlying distribution:

g(p) =

(
f̂ ( f ( p)) if p 2 Q,
0 otherwise.

We can use the clamped distribution estimate �eldg to
construct surfaces that contain the solution space of the query.
To generate a surface that bounds the query solution, we
observe that there will be some elementpmin 2 Q with a
minimum, non-zero distribution value. The solution to the
query may then be visualized by the isosurfaceg(pmin)� 1. We
refer to such a surface as the “minimum distribution surface,”
and denote it simply asSmin. Because we map multivariate data
samples to a scalar kernel density estimates (KDE), we can
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visualize query surfaces with common isosurfacing algorithms
such as Marching Cubes [29] or raycasting.

Given g : R3 ! R, it is possible to visualize surfaces cor-
responding to higher distribution values thanSmin, with the
goal of query analysis and re�nement. Surfaces formed from
increasingly higher distribution values will contain the regions
for which data samples are more representative of the total data
selected by the user's query. By examining these surfaces, the
user is able to re�ne their variable constraints intuitively in a
visual manner, and without losing the information criticalto
their query.

We illustrate this re�nement procedure in Fig. 2. In 2b,
we see the estimated distribution constructed from elements
p 2 Q by a query selecting regions of low pressure in a
hurricane dataset: pressure� � 1500 Pascal. Exploring this
distribution with isosurfaces corresponding to increasing dis-
tribution values can help the user to locate new visual features
and re�ne the constraints of the original query. We illustrate
this constraint re�nement in Fig. 2a; we see the surface
corresponding to the original query's solution for low pressure
in the bottom image (blue). This surface corresponds to the
minimum distribution surfaceSmin. Using transparency, we
see the effect of examining surfaces for distribution values
greater thanSmin; moving up from the bottom image in Fig. 2a,
elements with distribution values greater than 0.05 (blue-
green), 0.08 (green), and 0.12 (red). Note that these isosurfaces
also correspond to selecting an increasingly smaller subset of
points p 2 Q with high distribution values. From Fig. 2b we
see that these subsets also correspond to an increasingly tighter
range of values for pressure. With this type of exploration,the
user can visually explore the solution (i.e. distribution)of their
query to obtain information regarding the distribution behavior
of its variables.

3.3 Multivariate Query Segmentation

When visualizing an estimated joint distribution constructed
from (4), localized regions containing high distribution val-
ues can be the result of a single variable's contribution, or
the cumulative contribution of several variables. To generate
deeper insight into the query solution and help the user better
understand regions of local maxima and minima in the joint
distribution, we employ a strategy of feature analysis through
segmentation.

There are many multi-labeled data segmentation algo-
rithms [3], [21], [24], [32], but the most effective and common
segmentation employed for the analysis of KDE is non-
parametric mean shift clustering [9]. While mean shift cluster-
ing can classify and reveal distinct and major modalities ina
distribution, it can't generate insight into the importantvariable
trends occurring within these regions. For example, given a
speci�c local maxima, or a group of maxima, in a query's
joint distribution, a scientist may be interested in knowing:

� Are all variables constrained by the query well repre-
sented in these distribution features, or only certain ones?
If certain variables are predominant, which ones and how
predominant?

� Conversely, if a variable's distribution isnot strongly
contributing to speci�c modalities in the estimated joint

(a)

(b)

Fig. 2. This �gure visualizes distribution data calculated from a
query that selects regions of low pressure in a hurricane dataset:
pressure � -1500 Pascal. (a) shows speci�c isosurfaces corre-
sponding to decreasing statistical density in this data: (top to
bottom) 0.12, 0.08, 0.05, and 0.015, where the surface rendered
at 0.015 is the Smin surface for the query. (b) relates these
distribution values to an increasingly re�ned range of values
constrained by the query: e.g., the blue surface contains values
(-5000 < pressure< -1500), and the red surface contains values
(-3400 < pressure< -1500).

distribution, whereis this variable's distribution most
predominant in contributing to the query's KDE?

Mean shift clustering can't generate enough insight to answer
these questions, it can only identify the regions where thejoint
behavior of variables is signi�cant. Hence, for Query-Driven
Visualization (QDV) applications, mean shift clustering can't
help the scientist progress from stages of visual discoveryinto
stages of visual analysis and presentation.

To help answer these questions and generate deeper insight
into the query's joint distribution, we present a new segmenta-
tion strategy based on each variable's individual contribution
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to the query's KDE. Let f̂ j denote the estimated univariate
distribution of thej th variable. We then extract the portion of
the query solutionQ j associated with variablej as:

Q j :=
�

p 2 Qj f̂ j (x) > f̂k(x) 8k 6= j
	

:

Taken together, the subsetsQ0; : : : ;Qd form a partition of
the query solution setQ. Note that in computing the joint
distribution estimate in (4), the univariate distributions can
be obtained by accumulating the individual Gaussian inner
product terms for eachj—thus the segmentation is obtained
ef�ciently, with minimal additional overhead for computation
and storage.

Interpreting Segmented Regions
From a high level the segmented regions visually convey—in
the comparative context of all other variables constrainedby
the query—the individual signi�cance of each variable to the
query's solution. Visualizing segments concurrently by using
isosurfaces (see Fig. 4 in Section 4.1, and Fig. 7 in Section 4.2)
or direct volume rendering showswhere the distribution of
each variable is most important in de�ning the visual feature,
trend, or anomaly the scientist has discovered.

Segmented regions, when visualized concurrently with local
maxima regions in the query's KDE (see Fig. 9 in Sec-
tion 4.2), indicate which variables predominantly contribute
to statistically important features in the query's joint distri-
bution. Contrariwise, if a variable distribution isnot strongly
contributing to speci�c modalities in the estimated joint distri-
bution, segmented regions can also indicate where a variable's
distributionis most predominant in contributing to the query's
KDE. We illustrate this strategy in Section 4.2 with a methane
combustion dataset to show that regions corresponding to high
distribution values in the query are predominantly in�uenced
by temperatureandCO2 behavioral trends, andnot trends due
to pressure.

From a low level, the corresponding range of values for
the p 2 Q j contain a subset of values for the variablej that
are important and signi�cant for the user. To attain greater
insight from the segmented regions, it is therefore important
to consider the univariate distribution (i.e. histogram) of each
variable j as found throughout the query's solution spaceQ,
versus the variable's segmented regionQ j . In our analysis
we employ the univariate distribution estimatesf̂ j for each
segmented regionas it is de�ned exclusively to Qj and
visualize the corresponding minimum distribution surfaces to
represent each segmented region. As we show in Section 4.1, it
is often the case that the univariate distribution obtainedfor Q j
isolates distribution modalities fromQ. This observation can
then be used to perform multivariate query re�nement. More
speci�cally, it is possible to re�ne constraints over variable j to
focus upon or exclude a modality isolated inQ j . We illustrate
this re�nement strategy in Section 4.1 on a hurricane dataset.
In this example, we re�ne an initial query by using a modality
isolated intemperature's segmented region.

We now apply our strategy—using KDE, segmentation, and
query re�nement—to two separate datasets to demonstrate its
utility in generating greater insight for Query-Driven Visual-
ization strategies.

Fig. 3. Slices through the velocity (left) and pressure (right)
scalar �elds of the hurricane dataset. In Section 4.1 we utilize
these variables in a query that selects regions of low velocity
and low pressure.

4 VISUALIZATION APPLICATIONS AND

ANALYSIS

We apply our new method to two datasets and demonstrate our
ability to generate surfaces that bind the query's solutionand
perform distribution-based segmentation. In the �rst example,
this segmentation is utilized to re�ne the constraints expressed
for our query. In the second example, this segmentation is
concurrently visualized with regions of high distributionin
the query's KDE to identify which variables are predominant
in forming the solution to the query.

4.1 Hurricane Dataset

This dataset was generated by a simulation modeling a hur-
ricane over a 48 hour period. This dataset consists of 13
variables over a grid size of 300 x 300 x 90, and is composed
of 48 timesteps. In this experiment, we evaluate a query
that selects all cells, from a single timestep, where records
contain both low pressure, low wind velocity and fall in a
broad range of temperature: pressure� -350 Pascal AND
velocity � 10 mph AND -70� temperature� 20 Celsius. The
constraining characteristics of this query roughly approximate
the features that classify the hurricane's eye in this dataset. In
our analysis, we will analyze the variable-based segmentation
of this region, and demonstrate our approach for multivariate
query re�nement.

We apply our method to the set of points that have been
selected by the query after intersecting the regions of low
pressure, low velocity, and broad temperature. For illustrative
purposes, we see in Fig. 3 slices through the hurricane's
velocity (left) and pressure (right) scalar �elds. Temperature
is not depicted as the query selects all points based on values
for temperature.

In Fig. 4a, we see the query solution setQ visualized by
the minimum distribution surfaceSmin. Here we render our
surfaces using a traditional Marching Cubes implementation
over the raw data of the scalar joint distribution �eld. The
surface roughly resembles the center of the hurricane event.

We next visualize the segmentation that we obtained when
constructing the joint distribution for this query. In Fig.4b, we
see the results of the segmentation performed on the query's
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(a) Minimum distribution
surface.

(b) Segmented variables in
the query solution.

(c) Re�ned query where
the solution surface shows
the upper region of Fig. 4a.

(d) Re�ned query where
the solution surface shows
the lower region of Fig. 4a.

Fig. 4. These images depict the surface surrounding a query's
solution set in (a), as well as the segmentation based on
predominant distribution contributions within this query region.
(b) shows regions where pressure (blue), velocity (green, and
rendered transparent), and temperature (red) contribute most
signi�cantly to the joint distribution. Images (c) and (d) depict
the result of re�ning the original query shown in (a) with the
distribution information gathered for temperature obtained in (b).

solution set. In this image there are three well-de�ned visual
regions of interest. The blue region corresponds to the areas
where pressure's univariate distribution contributes themost
to the query's joint distribution. Correspondingly, the green
regions indicate areas where velocity plays the most signi�cant
in�uence in raising the values of the query's joint distribution.
In comparison to these larger surfaces, we see a smaller red
surface at the center of the query's solution set. This region
corresponds to the areas where temperature plays the most
signi�cant role in contributing to query's joint distribution.

Analysis

We can interpret the signi�cance of these visualizations by
analyzing the univariate distribution of each variable as it
is de�ned within the variable's segmented region, versus the
query's solution set.

The left column in Fig. 5 shows the individual distributions
of pressure (top), velocity (middle), and temperature (bottom)
as they are found within the query's solution set. These
histograms indicate that for this solution setQ, values above -
1500 Pascal for pressure, above 5 mph for velocity, and below
-50 degrees Celsius may play a predominant role in generating
the query's joint distribution. We compare these distributions
to those found in each variable's segmentation, shown at right
in Fig. 5.

(a) Pressure distribution in the query (left) and segmented
region (right).

(b) Velocity distribution in the query (left) and segmented
region (right).

(c) Temperature distribution in the query (left) and segmented
region (right).

Fig. 5. Based on the example in Section 4.1, these histograms
illustrate (top to bottom) the univariate distributions of pressure,
velocity, and temperature in the hurricane dataset as found
through a query region (left column) and the regions where
the respective variables are predominant in the approximated
joint distribution (right column) for the query. Note that the
two histograms (i.e. distributions) for temperature display vastly
different modalities; in Section 4.1 we use this isolated range of
data to direct re�nement of query constraints.

In comparison to the distributions observed for pressure
and velocity, the distribution for temperature's segmented
region (bottom right in Fig. 5) demonstrates the isolation of a
distinct modality from the distribution of temperature observed
through the query's solution space (bottom left in Fig. 5).
Speci�cally, the values for which temperature's univariate
distribution most in�uences the joint distribution of the query
are the range of values between 0 and 20 degrees Celsius.
The strength of utilizing distribution-based segmentation is
displayed in this example as the range of values from 0-
20 degrees Celsius is obscured in temperature's observed
univariate distribution in the query's solution space.

If the user was interested in further exploring this feature,
the distribution of temperature's segmented region indicates a
clear range of values for re�ning the query: 0� temperature�
20. Resubmitting the original query with this added constraint
now isolates this region, as demonstrated by the surface shown
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Fig. 6. Slices taken for three variables of the methane
combustion dataset. Depicted are pressure (left), temperature
(center), and Carbon Dioxide (right). We utilize these variables
for analysis in Section 4.2.

in Fig. 4d. Alternatively, if the user was interested in excluding
this feature from the query, the user could use the same range
of values to exclude this feature as shown in Fig. 4c.

4.2 Methane Dataset

We apply our distribution and segmentation method to a query
that analyzes a combustion dataset modeling a lean, premixed
turbulent methane �ame. This dataset incorporates 20 chemical
species and 6 different physical properties (velocity, temper-
ature, pressure, etc.). The simulation itself is simulatedon a
grid of size 300 x 300 x 300.

In this example, we utilize our method to analyze the data
points selected from a query that constrains regions of high
pressure, high temperature, and regions where the molecular
concentration ofCO2 are above trace levels: speci�cally,
pressure� 2 atmospheres AND temperature� 1000 Celsius
AND CO2 � 1:0� 8. The chemical speciesCO2 is a �nal
product of the combustion process of methane. The intent
of this query is to extract data that can provide insight into
how regions of increasing pressure and temperature within the
combustion region propagate this chemical species throughout
the �ame.

The respective variables constrained by our query are de-
picted in Fig. 6. In this �gure, we see slices through the
combustion data's pressure (left), temperature (center),and
CO2 (right) concentration scalar �elds.

Analysis

In the top image in Fig. 7, we see the minimum distribution
surface for the query. In the next series of images we see the
segmentation realized during the construction of the query's
joint distribution. In the middle and bottom images in Fig. 7,
the blue surface indicates the region where pressure contributes
most to the query's joint distribution. Correspondingly, the
red surface indicates the regions whereCO2 fundamentally
increases the query's distribution. Wrapped betweenCO2 and
pressure, the segmented region for temperature is shown in
green. For purposes of clarity in viewing theCO2 region, the
bottom image in Fig. 7 doesnot show the surface for pressure
and temperature's surface (green) is rendered transparent.

We next observe the univariate distributions for each vari-
able with respect to the query's solution space, and each
variable's respective segmentation region. The left column
in Fig. 8 shows individual distributions for pressure (top),

Fig. 7. These images visualize statistical data taken from a
query that evaluates a methane combustion dataset. The image
at top depicts a distribution-based surface that surrounds the
query's solution set. The images at middle and bottom illustrate
the segmentation for this query's joint distribution based on
the maximal contribution of each constrained variable: pressure
(blue), temperature (green), and CO2 (red). The �gure at bottom,
which, for clarity, does not show pressure and uses a trans-
parent surface for temperature, highlights the region where CO2
(red) contributes most signi�cantly to the query's solution.

temperature (middle), andCO2 (bottom) as found within the
query's solution set. We compare these distributions to those
found in each variable's segmentation, at right in Fig. 8.

Though not as pronounced as the hurricane example, each
variable's univariate distribution for their respective segmen-
tation regions is subtly more re�ned. For example, a second
modality (top right) has emerged for pressure in Fig. 8 at
the range of 3 atmospheres. Also, temperature andCO2 have
no distribution for values less than 1800 Celsius and 0.1
respectively (unlike the distributions shown at left in Fig. 8).

In Fig. 9, we apply the strategy discussed in Section 3.2 and
examine ranges of higher distribution values in the query's
joint distribution. In this �gure we see slices through the
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(a) Pressure distribution in the query (left) and segmented
region (right).

(b) Temperature distribution in the query (left) and segmented
region (right).

(c) CO2 distribution in the query (left) and segmented region
(right).

Fig. 8. These histograms illustrate (top to bottom) the individual
distributions of pressure, temperature, and concentration of Car-
bon Dioxide (CO2) in the Methane Combustion dataset as found
through the query region (left column) and the regions where the
respective variables are predominant in the approximated joint
distribution (right column). Note the histograms for each variable
in the right column are more re�ned than those based on the
entire query region (left column); speci�cally, major peaks f or
variables in the left column left have a higher relative distribution
in the right column. Thus the blue (pressure), red (temperature),
and green (Carbon Dioxide) colored regions in Fig. 7 (middle
and bottom) are the areas where there is a narrow and re�ned
range of values for each respective variable.

query solution's segmented regions oriented along the X
(left) and Y (right) axis. Here gray regions indicate lower
distribution regions in the query's joint distribution. Colored
regions correspond to areas of higher joint distribution value
where pressure (blue), temperature (green), andCO2 (red)
segmentation occurs. Note the reduced representation of pres-
sure in these images. Contrariwise, note the predominance of
temperature andCO2 indicating these variables, and the values
corresponding to each variable within its segmentation, play a
more predominant role in the joint distribution.

5 IMPLEMENTATION AND PERFORMANCE

Query-Driven Visualization (QDV) demands components that
are high-performing with respect to computation in order

Fig. 9. Slices oriented along the X (left) and Y (right) axis of
the segmented regions of the Methane dataset. Here segments
for pressure (blue), temperature (green), and CO2 (red) are
depicted only for high distribution values. Grey regions indicate
areas of lower distribution values in the query's solution set.

to support interactivity. Distribution estimations with KDE
are of orderO(N2) with a straightforward implementation
and can be limiting upon overall performance for largeN.
There are methods for accelerating KDE calculations using up-
front preprocessing, such as the Fast Gauss Transforms [44],
Fast Multipole Method [20], and tree-based strategies [19];
however, the up-front processing is typically expensive and
is amortized only if the KDE is evaluated frequently over
�xed data values. For QDV applications, however, new KDE
must be evaluated with every ad-hoc query, where the size
of N for the KDE will typically be a small fraction of the
total data. Paying a constant preprocessing cost for these
acceleration methods (for a small and varying number of
N) limits their utility for a QDV application. To accelerate
our KDE implementation, we have thus turned to hardware
acceleration.

We have implemented the GPU-based query engine pre-
sented by Gosink et al. [16], [17] to support rapid ad-hoc
queries on large data sets. In this paper, we also compute the
KDE distribution estimates and surfaces for visualizationon
the GPU. Our KDE computation takes as input a list of data
samples that pass the query. We launch a GPU thread per data
sample to evaluate the multivariate Gaussian kernel in (4).By
keeping the query solution on the GPU we can exploit the
inherent parallelism of the graphics hardware to accelerate the
KDE computation, in lieu of transferring the data back to main
memory for CPU computation.

In measuring the performance of our implementation, there
are two factors that affect our timings: increasing size forquery
solutions sets (i.e. decreasing the query's selectivity1), and
increasing the number of variables for the joint distribution
computation. We analyze these two metrics independently by
analyzing increasingly larger subsets of data, in conjunction
with queries that constrain an increasing number of variables.
The performance for this test are presented in Table 1. The
performance times are based on the hurricane dataset which
consists of 8.1 million cells mapped to a 300 X 300 x 90
uniform grid.

1. Query selectivity is the number of dataset records selected by the query
versus the total number of available records in the data.
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TABLE 1
This table depicts the performance times, in seconds, for our

gpu-based distribution estimation implementation. The axis are
decreasing selectivity vs increasing variable count. Times

include the time to access all raw data from CPU-memory, load
the data to the GPU, compute the distribution, determine the
segmentation (for multivariate queries), and write the solution

back to CPU memory.

Variables Queried select 1% select 2.5% select 5% select 10%
(seconds) (seconds) (seconds) (seconds)

1 1.09 8.3 27.6 109.0
2 2.2 16.4 57.2 227.0
3 3.1 23.02 78.7 301.0
4 3.8 30.4 97.53 386.0

From Table 1 we observe that our implementation follows
an expected performance trend for anO(N2) algorithm. Ad-
ditionally, we see that increasing the number of variables
utilized to construct a distribution scales with an expected
linear growth curve. In practice, we have found that these
processing times are not prohibitive – once the KDEs have
been computed, users are able to interactively explore different
distribution surfaces and the multivariate segmentation for
analysis purposes.

6 CONCLUSION

Herein, we have presented a method that uses a statistical
framework to estimate the underlying distribution of data
within a query's solution. This approach allows for the con-
struction of boundary surfaces for query regions based upon
the behaviors of one or more variables. Furthermore, users are
able to directly visualize the structure of the query in terms of
the multivariate distribution, or through a segmentation formed
by the univariate distribution estimations. The utility ofthese
methods in a QDV setting has been demonstrated across two
scienti�c datasets.

Our preliminary research indicates that additional statistical
measures might be useful in characterizing and visualizing
multivariate behavior within query regions. For example,
we have demonstrated a segmentation based on maximal-
contributions from a collection of variables. However, segmen-
tation based on mean and furthest outlying variable (i.e. the
variable furthest from the mean of variable distribution values)
have also displayed promising results. Furthermore, we plan
to investigate the use of textures on each variable's segmented
surface to convey additional statistical information.

We are also actively researching how to effectively relate
analysis results obtained from a query-selected region of the
dataset to the whole dataset: e.g.how statistically signi�cant
is the selected region in comparison to other regions of the
dataset, or even the whole dataset? To this degree we are inves-
tigating strategies that can employ information uncertainty into
QDV so that the neighborhood surrounding a query's selection
can be taken into consideration by our statistical framework.

Finally, we are working on implementing this statistical
framework into the VisIt software package [8]. In our imple-
mentation, users will load multiple variables from a single

database into a VisIt viewer. Users will then express and
re�ne queries by adjusting individual variable constraints using
interactive sliders. Assisted by a GPU-accelerated engine,
our statistical framework will facilitate the visualization and
exploration of the various distribution surfaces and segmented
regions within the query's solutions space.
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Zöckler. A generalized Marching Cubes algorithm based on non-binary
classi�cations. Technical Report SC-97-05, Konrad-Zuse-Zentrum f̈ur
Informationstechnik Berlin, 1997.

[22] Yannis Ioannidis. The history of histograms (abridged). In Proc. VLDB,
pages 19–30, 2003.

[23] Heike J̈anicke, Michael B̈ottinger, and Gerik Scheuermann. Brushing of
attribute clouds for the visualization of multivariate data. IEEE Trans.
on Visualization and Computer Graphics, 14(6):1459–1466, 2008.

[24] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring
of Hermite data.ACM Trans. on Graphics, 21(3):339–346, 2002.

[25] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional
transfer functions for interactive volume rendering.Proc. of IEEE Trans.
on Visualization and Computer Graphics, 8(3):270–285, 2002.
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